1. Cho KS. Current status of non-communicable diseases in the Republic of Korea. Public Health Weekly Report. 2021;14(4):166-177.
3. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception. Alzheimer's & Dementia. 2012;8(Suppl 1):S1-S68.
https://doi.org/10.1016/j.jalz.2011.09.172.
4. Lopez OL, Becker JT, Kuller LH. Patterns of compensation and vulnerability in normal subjects at risk of Alzheimer's disease. Journal of Alzheimer's Disease. 2013;33(S1):S427-S438.
https://doi.org/10.3233/JAD-2012-129015.
8. Li T, Wei S, Shi Y, Pang S, Qin Q, Yin J, et al. The dose-response effect of physical activity on cancer mortality: findings from 71 prospective cohort studies. British Journal of Sports Medicine. 2016;50(6):339-345.
https://doi.org/10.1136/bjsports-2015-094927.
9. Ji H, Gulati M, Huang TY, Kwan AC, Ouyang D, Ebinger JE, et al. Sex differences in association of physical activity with all-cause and cardiovascular mortality. Journal of the American College of Cardiology. 2024;83(8):783-793.
https://doi.org/10.1016/j.jacc.2023.12.019.
10. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. Canadian Medical Association Journal. 2006;174(6):801-809.
https://doi.org/10.1503/cmaj.051351.
11. Harland BC, Dalrymple-Alford JC. Enriched environment procedures for rodents: creating a standardized protocol for diverse enrichment to improve consistency across research studies. Bio-Protocol. 2020;10(11):
https://doi.org/10.21769/BioProtoc.3637.
13. Bramati G, Stauffer P, Nigri M, Wolfer DP, Amrein I. Environmental enrichment improves hippocampus-dependent spatial learning in female C57BL/6 mice in novel IntelliCage sweet reward-based behavioral tests. Frontiers in Behavioral Neuroscience. 2023;17:1256744.
https://doi.org/10.3389/fnbeh.2023.1256744.
16. Hegde A, Suresh S, Mitra R. Early-life short-term environmental enrichment counteracts the effects of stress on anxiety-like behavior, brain-derived neurotrophic factor, and nuclear translocation of glucocorticoid receptors in the basolateral amygdala. Scientific Reports. 2020;10(1):14053.
https://doi.org/10.1038/s41598-020-70875-5.
17. Napoleão A, Fernandes L, Miranda C, Marum AP. Effects of calorie restriction on health span and insulin resistance: classic calorie restriction diet vs. ketosis-inducing diet. Nutrients. 2021;13(4):1302.
https://doi.org/10.3390/nu13041302.
18. Zhang L, Xu H, Ding N, Li X, Chen X, Chen Z. Beneficial effects on brain micro-environment by caloric restriction in alleviating neurodegenerative diseases and brain aging. Frontiers in Physiology. 2021;12:715443.
https://doi.org/10.3389/fphys.2021.715443.
19. Smith PJ. Caloric restriction, cognitive function, and brain health [Internet]. NY: The Wiley Encyclopedia of Health Psychology; 2020 [cited 2021 Nov 25] Available from:
https://doi.org/10.1002/9781119057840.ch30.
21. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. The Journal of Pharmacology and Experimental Therapeutics. 2003;304(1):1-7.
https://doi.org/10.1124/jpet.102.035048.
22. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. British Journal of Pharmacology. 2016;173(4):649-665.
https://doi.org/10.1111/bph.13139.
26. Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using the resource equation approach. Malaysian Journal of Medical Sciences. 2017;24(5):101-105.
https://doi.org/10.21315/mjms2017.24.5.11.
28. Watada S, Yu YM, Fischman AJ, Kurihara T, Shen CA, Tompkins RG, et al. Evaluation of intragastric vs intraperitoneal glucose tolerance tests in the evaluation of insulin resistance in a rodent model of burn injury and glucagon-like polypeptide-1 treatment. Journal of Burn Care & Research. 2014;35(1):e66-e72.
https://doi.org/10.1097/BCR.0b013e31828a8ede.
29. Hall CS. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. Journal of Comparative Psychology. 1934;18(3):385-403.
https://doi.org/10.1037/h0071444.
30. Carter M, Shieh J. Guide to research techniques in neuroscience. 2nd ed. CA: Academic Press; 2015 p. 39-71.
33. Rojas-Carvajal M, Fornaguera J, Mora-Gallegos A, Brenes JC. Testing experience and environmental enrichment potentiated open-field habituation and grooming behaviour in rats. Animal Behaviour. 2018;137(1):225-235.
https://doi.org/10.1016/j.anbehav.2018.01.018.
34. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology. 2013;106-107:1-16.
https://doi.org/10.1016/j.pneurobio.2013.04.001.
35. Clark RE, Squire LR. Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(Suppl 2):10365-10370.
https://doi.org/10.1073/pnas.1301225110.
36. Ghafarimoghadam M, Mashayekh R, Gholami M, Fereydani P, Shelley-Tremblay J, Kandezi N, et al. A review of behavioral methods for the evaluation of cognitive performance in animal models: current techniques and links to human cognition. Physiology & Behavior. 2022;244(1):113652.
https://doi.org/10.1016/j.physbeh.2021.113652.
37. Hullinger R, O'Riordan K, Burger C. Environmental enrichment improves learning and memory and long-term potentiation in young adult rats through a mechanism requiring mGluR5 signaling and sustained activation of p70s6k. Neurobiology of Learning and Memory. 2015;125(1):126-134.
https://doi.org/10.1016/j.nlm.2015.08.006.
38. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature Reviews Molecular Cell Biology. 2005;6(4):298-305.
https://doi.org/10.1038/nrm1616.
39. Portero-Tresserra M, Galofré-López N, Pallares E, Gimenez-Montes C, Barcia C, Granero R, et al. Effects of caloric restriction on spatial object recognition memory, hippocampal neuron loss and neuroinflammation in aged rats. Nutrients. 2023;15(7):1572.
https://doi.org/10.3390/nu15071572.
40. Ferreira FR, Spini VBMG, Lopes EJ, Lopes RFF, Moreira EA, Amaral MAF, et al. Effect of feed restriction on learning, memory and stress of rodents. Journal of Biosciences. 2006;22(1):91-97.
41. Kaptan Z, Akgün-Dar K, Kapucu A, Dedeakayoğulları H, Batu Ş, Üzüm G. Long term consequences on spatial learning-memory of low-calorie diet during adolescence in female rats; hippocampal and prefrontal cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus. Brain Research,. 2015;1618:194-204.
https://doi.org/10.1016/j.brainres.2015.05.041.
42. Zhang L, Huang YJ, Sun JP, Zhang TY, Liu TL, Ke B, et al. Protective effects of calorie restriction on insulin resistance and islet function in STZ-induced type 2 diabetes rats. Nutrition & Metabolism. 2021;18(1):48.
https://doi.org/10.1186/s12986-021-00575-y.
43. Aldhshan MS, Mizuno TM. Environmental enrichment accentuates glucose-induced feeding suppression and glial cell line-derived neurotrophic factor gene expression in the hypothalamus of mice. Nutritional Neuroscience. 2024;27(2):106-119.
https://doi.org/10.1080/1028415X.2023.2165938.
44. Ali S, Liu X, Queen NJ, Patel RS, Wilkins RK, Mo X, et al. Long-term environmental enrichment affects microglial morphology in middle age mice. Aging. 2019;11(8):2388-2402.
https://doi.org/10.18632/aging.101923.
45. Beals JW, Kayser BD, Smith GI, Schweitzer GG, Kirbach K, Kearney ML, et al. Dietary weight loss-induced improvements in metabolic function are enhanced by exercise in people with obesity and prediabetes. Nature Metabolism. 2023;5(7):1221-1235.
https://doi.org/10.1038/s42255-023-00829-4.
46. Feng Y, Cui Z, Lu X, Gong H, Liu X, Wang H, et al. Transcriptomics dissection of calorie restriction and exercise training in brown adipose tissue and skeletal muscle. Nutrients. 2023;15(4):1047.
https://doi.org/10.3390/nu15041047.
47. Xu S, Mei S, Lu J, Wu H, Dong X, Shi L, et al. Transcriptome analysis of microglia reveals that the TLR2/IRF7 signaling axis mediates neuroinflammation after subarachnoid hemorrhage. Frontiers in Aging Neuroscience. 2021;13:645649.
https://doi.org/10.3389/fnagi.2021.645649.
49. Kimura LF, Novaes LS, Picolo G, Munhoz CD, Cheung CW, Camarini R. How environmental enrichment balances out neuroinflammation in chronic pain and comorbid depression and anxiety disorders. British Journal of Pharmacology. 2021;179(8):1640-1660.
https://doi.org/10.1111/bph.15584.